Why does GCC use multiplication by a strange number in implementing integer division?
I've been reading about div
and mul
assembly operations, and I decided to see them in action by writing a simple program in C:
File division.c
#include <stdlib.h>
#include <stdio.h>
int main()
{
size_t i = 9;
size_t j = i / 5;
printf("%zu
",j);
return 0;
}
And then generating assembly language code with:
gcc -S division.c -O0 -masm=intel
But looking at generated division.s
file, it doesn't contain any div operations! Instead, it does some kind of black magic with bit shifting and magic numbers. Here's a code snippet that computes i/5
:
mov rax, QWORD PTR [rbp-16] ; Move i (=9) to RAX
movabs rdx, -3689348814741910323 ; Move some magic number to RDX (?)
mul rdx ; Multiply 9 by magic number
mov rax, rdx ; Take only the upper 64 bits of the result
shr rax, 2 ; Shift these bits 2 places to the right (?)
mov QWORD PTR [rbp-8], rax ; Magically, RAX contains 9/5=1 now,
; so we can assign it to j
What's going on here? Why doesn't GCC use div at all? How does it generate this magic number and why does everything work?