Why does C++ code for testing the Collatz conjecture run faster than hand-written assembly?
I wrote these two solutions for Project Euler Q14, in assembly and in C++. They implement identical brute force approach for testing the Collatz conjecture. The assembly solution was assembled with:
nasm -felf64 p14.asm && gcc p14.o -o p14
The C++ was compiled with:
g++ p14.cpp -o p14
Assembly, p14.asm
:
section .data
fmt db "%d", 10, 0
global main
extern printf
section .text
main:
mov rcx, 1000000
xor rdi, rdi ; max i
xor rsi, rsi ; i
l1:
dec rcx
xor r10, r10 ; count
mov rax, rcx
l2:
test rax, 1
jpe even
mov rbx, 3
mul rbx
inc rax
jmp c1
even:
mov rbx, 2
xor rdx, rdx
div rbx
c1:
inc r10
cmp rax, 1
jne l2
cmp rdi, r10
cmovl rdi, r10
cmovl rsi, rcx
cmp rcx, 2
jne l1
mov rdi, fmt
xor rax, rax
call printf
ret
C++, p14.cpp
:
#include <iostream>
int sequence(long n) {
int count = 1;
while (n != 1) {
if (n % 2 == 0)
n /= 2;
else
n = 3*n + 1;
++count;
}
return count;
}
int main() {
int max = 0, maxi;
for (int i = 999999; i > 0; --i) {
int s = sequence(i);
if (s > max) {
max = s;
maxi = i;
}
}
std::cout << maxi << std::endl;
}
I know about the compiler optimizations to improve speed and everything, but I don’t see many ways to further optimize my assembly solution (speaking programmatically, not mathematically).
The C++ code uses modulus every term and division every other term, while the assembly code only uses a single division every other term.
But the assembly is taking on average 1 second longer than the C++ solution. Why is this? I am asking mainly out of curiosity.
Execution times
My system: 64-bit Linux on 1.4 GHz Intel Celeron 2955U (Haswell microarchitecture).
g++
(unoptimized): avg 1272 ms.g++ -O3
: avg 578 ms.asm (div)
(original): avg 2650 ms.asm (shr)
: avg 679 ms.- @johnfound asm (assembled with NASM): avg 501 ms.
- @hidefromkgb asm: avg 200 ms.
- @hidefromkgb asm, optimized by @Peter Cordes: avg 145 ms.
- @Veedrac C++: avg 81 ms with
-O3
, 305 ms with-O0
.